6 research outputs found

    Performance Evaluation of Source Routing Minimum Cost Forwarding Protocol over 6TiSCH Applied to the OpenMote-B Platform

    Get PDF
    The aim of this work is the development of Source Routing Minimum Cost Forwarding (SRMCF) protocol over IPv6 over the TSCH mode of IEEE 802.15.4e (6TiSCH), evaluating the performance of these protocols for the Internet of Things (IoT). To perform this evaluation, this work is making use of the OpenWSN project platform, which implements IEEE 802.15.4e in an open source environment. The evaluation process is also being done in the most recent version of the OpenMote-B platform. Another goal of this collaboration is to give contribution to the investigation of the applicability of quality of service (QoS) applied to the IEEE 802.15.4e standard. In the present stage of development, the efforts are concentrated on the programming of the required code, and the adaptation of the OpenWSN stack. Once the programming code is implemented, the team will investigate the possibilities to apply quality of service over the stack developed. Next, the team will also investigate the possibilities to explore long range routing techniques using the OpenMote platforms. In this task, we will use xBee, LoraWAN, Raspberry PI and Arduino platforms.info:eu-repo/semantics/publishedVersio

    IoT protocols, architectures, and applications

    Get PDF
    The proliferation of embedded systems, wireless technologies, and Internet protocols have made it possible for the Internet-of-things (IoT) to bridge the gap between the physical and the virtual world and thereby enabling monitoring and control of the physical environment by data processing systems. IoT refers to the inter-networking of everyday objects that are equipped with sensing, computing, and communication capabilities. These networks can collaborate to autonomously solve a variety of tasks. Due to the very diverse set of applications and application requirements, there is no single communication technology that is able to provide cost-effective and close to optimal performance in all scenarios. In this chapter, we report on research carried out on a selected number of IoT topics: low-power wide-area networks, in particular, LoRa and narrow-band IoT (NB-IoT); IP version 6 over IEEE 802.15.4 time-slotted channel hopping (6TiSCH); vehicular antenna design, integration, and processing; security aspects for vehicular networks; energy efficiency and harvesting for IoT systems; and software-defined networking/network functions virtualization for (SDN/NFV) IoT

    5G and beyond networks

    Get PDF
    This chapter investigates the Network Layer aspects that will characterize the merger of the cellular paradigm and the IoT architectures, in the context of the evolution towards 5G-and-beyond, including some promising emerging services as Unmanned Aerial Vehicles or Base Stations, and V2X communications

    Breaking Barriers in Emerging Biomedical Applications

    No full text
    The recent global COVID-19 pandemic has revealed that the current healthcare system in modern society can hardly cope with the increased number of patients. Part of the load can be alleviated by incorporating smart healthcare infrastructure in the current system to enable patient’s remote monitoring and personalized treatment. Technological advances in communications and sensing devices have enabled the development of new, portable, and more power-efficient biomedical sensors, as well as innovative healthcare applications. Nevertheless, such applications require reliable, resilient, and secure networks. This paper aims to identify the communication requirements for mass deployment of such smart healthcare sensors by providing the overview of underlying Internet of Things (IoT) technologies. Moreover, it highlights the importance of information theory in understanding the limits and barriers in this emerging field. With this motivation, the paper indicates how data compression and entropy used in security algorithms may pave the way towards mass deployment of such IoT healthcare devices. Future medical practices and paradigms are also discussed

    Experiment control and monitoring system for LOG-a-TEC testbed

    Full text link
    The LOG-a-TEC testbed is a combined outdoor and indoor heterogeneous wireless testbed for experimentation with sensor networks and machine-type communications, which is included within the Fed4FIRE+ federation. It supports continuous deployment principleshowever, it is missing an option to monitor and control the experiment in real-time, which is required for experiment execution under comparable conditions. The paper describes the implementation of the experiment control and monitoring system (EC and MS) as the upgrade of the LOG-a-TEC testbed. EC and MS is implemented within existing infrastructure management and built systems as a new service. The EC and MS is accessible as a new tab in sensor management system portal. It supports several commands, including start, stop and restart application, exit the experiment, flash or reset the target device, and displays the real-time status of the experiment application. When nodes apply Contiki-NG as their operating system, the Contiki-NG shell tool is accessible with the help of the newly developed tool, giving further experiment execution control capabilities to the user. By using the ZeroMQ concurrency framework as a message exchange system, information can be asynchronously sent to one or many devices at the same time, providing a real-time data exchange mechanism. The proposed upgrade does not disrupt any continuous deployment functionality and enables remote control and monitoring of the experiment. To evaluate the EC and MS functionality, two experiments were conducted: the first demonstrated the Bluetooth Low Energy (BLE) localization, while the second analysed interference avoidance in the 6TiSCH (IPv6 over the TSCH mode of IEEE 802.15.4e) wireless technology for the industrial Internet of Things (IIoT)

    5G and beyond networks

    Get PDF
    This chapter investigates the Network Layer aspects that will characterize the merger of the cellular paradigm and the IoT architectures, in the context of the evolution towards 5G-and-beyond, including some promising emerging services as Unmanned Aerial Vehicles or Base Stations, and V2X communications
    corecore